
MATH 245 S25, Exam 1 Solutions

1. Carefully define the following terms: tautology, xor.

A tautology is a proposition that is logically equivalent to T (or, that is always T ). Xor is
a propositional operator denoted ⊕, where proposition p⊕ q is F if p, q are either both T or
both F (and T otherwise). Alternate solution: Given any propositions p, q, the proposition
p⊕ q, p xor q, is T when exactly one of p, q are T , and F otherwise.

2. Carefully state the following theorems: Distributivity (for Propositions), Simplification Seman-
tic Theorem.
The distributivity semantic theorem says, for all propositions p, q, r, that p ∧ (q ∨ r) ≡
(p ∧ q) ∨ (p ∧ r) and also p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r). The simplification semantic theorem
says, for any propositions p, q, that p ∧ q ` p.

3. Let p, q, r, s be propositions. Prove that (p∧q)→ (r∧s) is NOT equivalent to (r∧s)→ (p∧q).
God help anyone who built a 16×8 truth table, what a huge waste of time. All that is needed
is one (complete) specific single row of this truth table, where the two propositions disagree.
We need to make p ∧ q false and r ∧ s true (or the other way around), and there are lots of
ways to do this. One way: take p to be F and q, r, s all T . Now p ∧ q is F and r ∧ s is T , so
(p ∧ q)→ (r ∧ s) is T but (r ∧ s)→ (p ∧ q) is F .

4. For arbitrary n ∈ N0, calculate and simplify
(3n)!

(3(n + 1))!
.

Note that (3(n + 1))! = (3n + 3)! = (3n + 2)!(3n + 3) = (3n + 1)!(3n + 2)(3n + 3) =
(3n)!(3n + 1)(3n + 2)(3n + 3), using the definition of factorial three times. Plugging in, we

get (3n)!
(3(n+1))! = (3n)!

(3n)!(3n+1)(3n+2)(3n+3) = 1
(3n+1)(3n+2)(3n+3) . If you really want to play walking

calculator, you can optionally multiply this out to get 1
27n3+54n2+33n+6

.

5. Carefully state the commutativity theorem for disjunction. Then, prove it without truth tables,
using at most two cases.

Statement: For any propositions p, q, we have p ∨ q ≡ q ∨ p.

PROOF 1: Two cases: either p, q are both F or not.
If p, q ARE both F , then p ∨ q is F , but also q, p are both F so q ∨ p is F . If p, q are NOT
both F , then p ∨ q is T but also q, p are not both F so q ∨ p is T . In both cases p ∨ q and
q ∨ p agree.

PROOF 2: Two cases: either p ∨ q is T or F . If T , then at least one of p, q is T . But then
also q∨ p is T . If instead p∨ q is F , then both of p, q are F . But then also q∨ p is F . In both
cases p ∨ q and q ∨ p agree.



6. Without truth tables, prove that, for all propositions p, q, r, we have p→ q, q → r, r → p ` p↔
q.

We must begin by letting p, q, r be arbitrary propositions, and assuming that p → q, q →
r, r → p are all T .

Next, we must prove q → p. There are many correct ways to do this, here are three of them.
METHOD 1: Direct proof. Suppose that q is true. By modus ponens with q → r, we conclude
r is true. By modus ponens again with r → p, we conclude p is true. Hence q → p.
METHOD 2: Cases on q. If q is true, then by modus ponens r is true, and by modus ponens
again p is true. So by addition p∨ (¬q) is true. If instead q is false, then by addition p∨ (¬q)
is true. In both cases p ∨ (¬q) is true, so by conditional interpretation q → p is true.
METHOD 3: Since r → p is true, by conditional interpretation p ∨ (¬r) is true. Now we do
cases. If p is true, then by addition p ∨ (¬q) is true. If instead ¬r is true, then by modus
tollens with q → r, ¬q is true. By addition p∨ (¬q) is true. In both cases p∨ (¬q) is true, so
by conditional interpretation q → p is true.

Correct proofs should end with Thm 2.17(b), although it’s fine to call it a “theorem in the
book”. This allows us to combine the hypothesis p → q with the recently proved q → p to
get p↔ q (which must be the final statement).

7. Let x ∈ Z. Prove that if x3 is odd, then x is odd.
A direct proof is very difficult, not recommended. Instead we use a contrapositive proof.
Suppose that x is not odd. Then, by Cor 1.8 (although it’s fine to call it a “theorem in
the book”), x is even. Hence there is some integer y so that x = 2y. We now calculate
x3 = (2y)3 = 8y3 = 2(4y3). Since 4y3 is an integer, x3 is even. By Cor 1.8 AGAIN, we
conclude that x3 is not odd.

8. Prove or disprove: ∀a, b, c ∈ Z, if a|c and b|c, then ab|c.
The statement is false, and needs a counterexample. That is, ¬∀a, b, c (p ∧ q) → r ≡
∃a, b, c (p ∧ q) ∧ ¬r.

Many solutions are possible. Take a = 2, b = 4, c = 12. Now a|c since 2 · 6 = 12 and b|c since
4 · 3 = 12. We now prove ab - c by contradiction. Suppose instead, by way of contradiction,
that ab|c. Then there would be an integer k satisfying abk = c, i.e. 2 · 4 · k = 12, so
k = 12

8 = 1.5. Since 1.5 isn’t an integer, we have our contradiction.

9. Prove or disprove: ∀x ∈ Z, |7x− 10| ≥ 2.
The statement is true. We begin by letting x ∈ Z be arbitrary. We have two cases, motivated
by the way the absolute value is calculated.
Case x ≥ 2: Multiplying by 7, we get 7x ≥ 14, so 7x − 10 ≥ 14 − 10 = 4. In particular
7x− 10 > 0 so |7x− 10| = 7x− 10, but also |7x− 10| = 7x− 10 ≥ 4 ≥ 2.
Case x ≤ 1 (i.e. x < 2): Multiplying by 7, we get 7x ≤ 7, so 7x−10 ≤ 7−10 = −3. Multiply-
ing by −1 we get −(7x−10) ≥ 3. In particular 7x−10 < 0 so |7x−10| = −(7x−10) ≥ 3 ≥ 2.

In both cases |7x− 10| ≥ 2.

10. Prove or disprove: ∀x ∈ Z, ∀y ∈ Z, |7x− 10y| ≥ 2.
The statement is false, and needs a specific counterexample. Many choices are possible.
SOLUTION 1: Take x = y = 0, now |7x− 10y| = |0− 0| = |0| = 0 6≥ 2.
SOLUTION 2: Take x = 10, y = 7, now |7x− 10y| = |70− 70| = |0| = 0 6≥ 2.
SOLUTION 3: Take x = 3, y = 2, now |7x− 10y| = |21− 20| = |1| = 1 6≥ 2.


